Connected Medical Devices: Internet of Things for Health Monitoring

The IoT is an ecosystem of physical devices embedded with sensors, software, and other technologies that exchange data with other devices and systems via the Internet. Cloud-connected medical devices and IoT technology help monitor many health-related issues to improve patient care, track hospital assets, and advance medical research. These only hint at how healthcare institutions and professionals can benefit from the IoMT (the Internet of Medical Things). 

With more providers realizing the potential behind IoT, medical devices represent one of the fastest-growing sectors in healthcare IT. The IoT global market is valued at $406.36B in 2022 and is projected to reach $652.58B by 2030.

Let’s explore in what ways healthcare IoT solutions are beneficial for medical organizations and what exactly can be achieved with an IoT medical devices help.


Empeek team of experts is ready to help you take your business to the next level.

The Internet of Things and Its Role in Healthcare

The purpose of IoT in any industry is to make life simpler, and the Internet of Medical Things aims to make self-monitoring more accurate and accessible. IoT in hospital management tends to improve hospital efficiency and some medical procedures. 

Connected Medical Devices: Internet of Things for Health Monitoring 1

Not health monitoring alone can be enabled by the Internet of Medical Things. The major benefits of interconnected healthcare include:

  • Better patient monitoring inside and outside a hospital environment. Various solutions can help transmit patient data from their home to doctors and hospital staff. This results in reduced unnecessary follow-up visits. In general, monitoring devices help doctors know more about potentially dangerous patient behavior and provide advanced diagnostics.
  • Help people with chronic illnesses and the elderly. IoT medical devices can detect critical situations and set alerts for medical help in an emergency.
  • Internet of Things for Medical Research Support. Since connected healthcare devices can generate tonnes of valuable data, they can contribute to data analysis, which, in turn, improves the quality of treatment and pushes for technological advancements.
  • Operational efficiency. IoMT isn’t limited by wearables and monitors for various conditions; smart beds utilized in medical facilities are another great example of IoMT. Smart beds allow monitoring dozens of health signals and automatically updating a patient’s record. They also can spot sudden changes in a patient’s movement, which can be vital in acute care institutions.
  • Decreased equipment downtime. Medical equipment was the first healthcare sector to have IoT implementations: monitoring expensive devices like MRIs and X-ray machines via the cloud allows for predictive maintenance and results in less downtime.
  • Enhanced inventory management. Thanks to IoT, hospitals can easily track lots of assets: drugs, inventory, hardware, etc. This way, it’s easier to manage hospital operations, allocating the right resources and ensuring that the equipment is available when needed. Asset tracking with the help of RFID tags or other types of smart labels is applied to surgical tools, inventory, laundry, or basically any piece of equipment. 
  • Virtual medical documentations. Some medical IoT solutions like Augmedix are designed to improve clinician productivity by automating visit data, capturing dictation, generating suggestions, and synchronizing with patient records. Such AI-powered solutions are extremely helpful in the context of telemedicine.

Altogether, all these benefits come to a single argument, and an important one: IoMT means reducing medical expenses due to better patient monitoring and supply and staff management. Check our IoT use cases in healthcare for more insights.

Examples of Connected Medical Devices and IoT

Tracking health is nothing new: glucose monitors have been in use since the 1970s and fitness wearables designed for the general public pioneered in 2008. Over the years, lots of health checking features have been adopted in mobile apps and new devices have been developed for monitoring issues from blood pressure to sleep patterns. 

Connected Medical Devices: Internet of Things for Health Monitoring 2

Here are some common examples of medical IoT applications:

  • Remote patient monitoring. IoT medical devices in healthcare are very helpful in collecting patient data for analysis, treatment recommendations, and timely alerts. Smart and portable glucose monitoring solutions that eliminate manual records and provide patients and doctors with continuous real-time data; connected inhalers for monitoring and predicting asthma attacks; ingestible sensors for collecting information from a patient’s digestive systems are just a few connected medical device examples. The current pandemic has made the need for medical IoT adoption even more apparent: many remote monitoring and hospital tracking solutions help manage hospital availability and improve treatment for Covid-19 patients. An innovative wireless biosensor was designed by Philips to help monitor Covid-19 patients in a non-critical state. A real-time health monitoring system is used for improved continuous tracking of many different conditions (multiple sclerosis, Parkinson’s disease, etc.).
  • Self-monitoring. The self-monitoring trend is helpful for medical care and general fitness devices are extending the number of features at each iteration. For example, Apple Watch wearables allow users to track lots of health metrics including heart rate.
  • Emotion-sensing technology. IoT has spread influence over mental health as well. So-called mood-aware devices (like Amazon’s Halo wristband) are backed by science and can assess mood and stress levels. Even though it’s hard to apply the collected data to actual mental health diagnosis and treatment, it’s a promising field that can bring more awareness to wellbeing issues. 
  • Robotic surgery and augmented reality. Robot-assisted and live remote-operated surgeries are already the reality. Small, Internet-connected medical devices can help improve complex medical procedures, making them less invasive for patients and more informative for doctors. The AR technology is also making its way to interconnected healthcare: for instance, surgeons have already used Google AR glass to have medical data visualized in 3D and broadcast operations live.


Let us help you achieve greater business results - our software development experts push the limits to deliver the most advanced solutions.

The Issue of Security of IoT Medical Devices

Given that internet-connected medical devices are vulnerable to hacker attacks and data leakage, it’s a top priority to develop medical IoT solutions with the latest security practices in mind. There also many standards to comply with in healthcare development: HIPAA (Health Insurance Portability and Accountability Act), HITECH (Health Information Technology for Economic and Clinical Health Act), NHS (National Health Service), and FDA (Federal Food, Drug, and Cosmetic Act) for the US.

These regulations require the integrity and safety of personal health information from medical IT solutions. If a medical device that collects patient data lacks industry standards, the identifiable data can be exposed, leading to fraudulent insurance claims and other consequences.

Connected Medical Devices: Internet of Things for Health Monitoring 3

When creating any medical hardware or software for use in healthcare environments, connected medical devices cybersecurity is one of the biggest challenges. In 2019, 82% of healthcare institutions reported that they experienced hacker attacks against healthcare devices. Thus, the demand for healthcare IoT security has increased. The internet only continues expanding, and so do security vulnerabilities. Since tracking devices involve a lot of sensitive information, it’s crucial for them to use proper encryption and comply with regulations.

The FDA is a regulatory body that conducts cybersecurity assessments and issues warnings to the public about manufacturers and devices with identified vulnerabilities. The FDA recommends developers proactively address security threats and provide mitigation strategies in case of any flaw. For example, in 2019, the organization reported vulnerabilities in Medtronic’s implantable cardiac devices: the wireless telemetry protocol that enabled data transfer from medical devices to clinicians didn’t use encryption, authentication, or authorization and thus was exposed to cybersecurity threats. Check our additional article on medical device software requirements.

Primary measures to protect IoT medical devices from security breaches include:

  • Encryption. The use of cryptography and public key infrastructure is a must for any platform that collects or stores personal health information. Symmetric and asymmetric algorithms applied to IoT can still not guarantee the best protection in real-time: Elliptic-Curve Cryptography and a Hybrid Lightweight Algorithm are more secure for the IoT application in medical devices. 
  • Network segmentation. Subnet division allows for better control over the network: this way, a locally implemented device for unintended use can’t impact the entire structure. 
  • Authorization and authentication. Any medical device and the infrastructure it’s connected to should limit access to data at all stages of interaction to prevent interception. 
  • An orchestrated update process. Updating IoT hardware and software is no easy task and it once again can expose devices to cyberattacks. Manufacturers and developers should adopt a secure and effective process for updating the system and validating it across all the devices that are in use. 
  • User instructions. Finally, giving end-users clear instructions on installation, configuration, and access won’t hurt.

At Empeek, we provide outsourced medical device development services, concentrating a lot on the security issues. We build HIPAA- and GDPR-compliant healthcare IoT solutions, making data protection one of the major development responsibilities. We’ve been developing medical software for over 5 years and have the expertise needed to build a robust system. Adopting cutting-edge software architecture and data analysis algorithms, we can create custom medical IoT apps or IoT extensions to enhance existing systems.

Final thoughts

The era of IoMT is already upon us and connected medical devices will continue growing in number and functionalities they provide. From smartwatches used at home to chatty hospital beds with respiratory sensors, all these medical devices help track vital health parameters while automatically synchronizing across systems. Without any exaggeration, this technology can save lives, and speaking of day-to-day healthcare provider operations, it can reduce medical expenses, leading to improved outcomes and increasing patient and doctor satisfaction. One of our alike IoT projects is EHR app to connect families.

There’s practically no area that isn’t already monitored by smart medical devices. Healthcare specialists predict that medical wearables and sensors will become more accessible and also smaller, which will open ways for better treatment, less invasive procedures, reduced hospitalizations, and effective data use.

If you’re looking to implement IoT solutions for medical practice, contact us and we’ll discuss the development.


What are the security issues with medical IoT?

Medical IoT devices pose significant security challenges that must be addressed to protect patient privacy and the integrity of healthcare systems. Key security issues include vulnerabilities and exploits, data breaches and privacy risks, lack of encryption, insecure communication channels, physical security concerns, lack of updates and patches, supply chain risks, and insider threats. These risks can lead to unauthorized access, data interception, tampering, and compromise of patient information.

To mitigate these security issues, you need to implement robust measures. This includes: 

  • employing strong authentication protocols, 
  • implementing data transmission and storage encryption, 
  • ensuring secure communication channels, 
  • implementing physical security measures, 
  • regularly updating devices with security patches, 
  • conducting thorough supply chain assessments. 

Additionally, addressing insider threats requires strict access controls and monitoring of user activities.

What are the top examples of IoT devices in healthcare?

IoT devices have found widespread application in healthcare, transforming various aspects of patient care. Examples include: 

  • Wearable health trackers that monitor vital signs and activity levels, enabling personalized health monitoring. 
  • Remote patient monitoring devices, such as blood pressure and glucose monitors, transmit real-time data to healthcare providers, facilitating remote monitoring and timely interventions. 
  • Smart pills and medication management devices help track medication adherence, while telehealth and virtual consultation tools enable remote consultations between patients and healthcare providers. 
  • Smart implants and prosthetics enhance functionality and provide real-time health data, and smart hospital beds and monitoring systems improve patient safety and monitoring. 
  • Ambient assisted living devices support independent living for older people and individuals with disabilities. 
  • Lastly, smart surgical tools provide real-time feedback and assistance during surgical procedures.

How can Empeek help implement IoT for medical devices?

Empeek delivers custom IoT solutions and services for care providers, healthcare organizations, and wireless medical device manufacturers. We have the expertise to configure advanced software architecture and develop data analysis algorithms that enable IoT medical devices to analyze large volumes of data efficiently. Whether it’s assembling a dedicated team to cover the entire software development life cycle (SDLC) or assisting with specific tasks, Empeek can provide the necessary support to expedite the implementation of IoT for medical devices.

1 Star2 Stars3 Stars4 Stars5 Stars (2 votes, average: 4.00 out of 5)
Views: 631
Written by:
Alex Shpachuk Alex Shpachuk CEO
Alex Shpachuk is the owner and strategic partner of Empeek. His effective leadership and a visionary approach to the future of healthcare turned the company into a dynamic environment attracting the brightest minds with the common vision for product impact and service excellence. With over a decade of experience in software engineering and comprehensive knowledge of designing and deploying tailor-made solutions for healthcare providers, Alex channels his passion for software development and consulting into the written word.

Posts you may like

View All Posts

Contact Us

Image preloader

Meet Empeek!

Scheduling a call made easy! Pick suitable time and let's get started

Book a call

Reliable Software delivery partner is closer than you think

  • HIPAA & GDPR compliance
  • 4.9 Rating on clutch
  • A winning tech stack
  • In-house team of versatile experts
  • Proven expertise in healthtech development

Alternatively, contact us directly: